direct product, metabelian, supersoluble, monomial, A-group, rational
Aliases: C2×C33⋊C2, C32⋊8D6, C33⋊6C22, C6⋊(C3⋊S3), (C3×C6)⋊4S3, (C32×C6)⋊3C2, C3⋊2(C2×C3⋊S3), SmallGroup(108,44)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C33⋊C2 — C2×C33⋊C2 |
C33 — C2×C33⋊C2 |
Generators and relations for C2×C33⋊C2
G = < a,b,c,d,e | a2=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 608 in 140 conjugacy classes, 59 normal (5 characteristic)
C1, C2, C2, C3, C22, S3, C6, C32, D6, C3⋊S3, C3×C6, C33, C2×C3⋊S3, C33⋊C2, C32×C6, C2×C33⋊C2
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, C33⋊C2, C2×C33⋊C2
Character table of C2×C33⋊C2
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | |
size | 1 | 1 | 27 | 27 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 1 | -2 | 1 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ14 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -2 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ16 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ20 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ22 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | -2 | 1 | orthogonal lifted from D6 |
ρ23 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -2 | 1 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ24 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | orthogonal lifted from D6 |
ρ25 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | -2 | orthogonal lifted from D6 |
ρ26 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ27 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ28 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 1 | -2 | 1 | 1 | -2 | 1 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ29 | 2 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ30 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
(1 32)(2 33)(3 31)(4 47)(5 48)(6 46)(7 34)(8 35)(9 36)(10 30)(11 28)(12 29)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 39)(20 37)(21 38)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 6 14)(2 4 15)(3 5 13)(7 24 16)(8 22 17)(9 23 18)(10 54 19)(11 52 20)(12 53 21)(25 37 28)(26 38 29)(27 39 30)(31 48 40)(32 46 41)(33 47 42)(34 51 43)(35 49 44)(36 50 45)
(1 26 8)(2 27 9)(3 25 7)(4 39 23)(5 37 24)(6 38 22)(10 45 42)(11 43 40)(12 44 41)(13 28 16)(14 29 17)(15 30 18)(19 50 47)(20 51 48)(21 49 46)(31 52 34)(32 53 35)(33 54 36)
(2 3)(4 13)(5 15)(6 14)(7 27)(8 26)(9 25)(10 51)(11 50)(12 49)(16 39)(17 38)(18 37)(19 43)(20 45)(21 44)(22 29)(23 28)(24 30)(31 33)(34 54)(35 53)(36 52)(40 47)(41 46)(42 48)
G:=sub<Sym(54)| (1,32)(2,33)(3,31)(4,47)(5,48)(6,46)(7,34)(8,35)(9,36)(10,30)(11,28)(12,29)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,39)(20,37)(21,38)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,54,19)(11,52,20)(12,53,21)(25,37,28)(26,38,29)(27,39,30)(31,48,40)(32,46,41)(33,47,42)(34,51,43)(35,49,44)(36,50,45), (1,26,8)(2,27,9)(3,25,7)(4,39,23)(5,37,24)(6,38,22)(10,45,42)(11,43,40)(12,44,41)(13,28,16)(14,29,17)(15,30,18)(19,50,47)(20,51,48)(21,49,46)(31,52,34)(32,53,35)(33,54,36), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,51)(11,50)(12,49)(16,39)(17,38)(18,37)(19,43)(20,45)(21,44)(22,29)(23,28)(24,30)(31,33)(34,54)(35,53)(36,52)(40,47)(41,46)(42,48)>;
G:=Group( (1,32)(2,33)(3,31)(4,47)(5,48)(6,46)(7,34)(8,35)(9,36)(10,30)(11,28)(12,29)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,39)(20,37)(21,38)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,54,19)(11,52,20)(12,53,21)(25,37,28)(26,38,29)(27,39,30)(31,48,40)(32,46,41)(33,47,42)(34,51,43)(35,49,44)(36,50,45), (1,26,8)(2,27,9)(3,25,7)(4,39,23)(5,37,24)(6,38,22)(10,45,42)(11,43,40)(12,44,41)(13,28,16)(14,29,17)(15,30,18)(19,50,47)(20,51,48)(21,49,46)(31,52,34)(32,53,35)(33,54,36), (2,3)(4,13)(5,15)(6,14)(7,27)(8,26)(9,25)(10,51)(11,50)(12,49)(16,39)(17,38)(18,37)(19,43)(20,45)(21,44)(22,29)(23,28)(24,30)(31,33)(34,54)(35,53)(36,52)(40,47)(41,46)(42,48) );
G=PermutationGroup([[(1,32),(2,33),(3,31),(4,47),(5,48),(6,46),(7,34),(8,35),(9,36),(10,30),(11,28),(12,29),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,39),(20,37),(21,38),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,6,14),(2,4,15),(3,5,13),(7,24,16),(8,22,17),(9,23,18),(10,54,19),(11,52,20),(12,53,21),(25,37,28),(26,38,29),(27,39,30),(31,48,40),(32,46,41),(33,47,42),(34,51,43),(35,49,44),(36,50,45)], [(1,26,8),(2,27,9),(3,25,7),(4,39,23),(5,37,24),(6,38,22),(10,45,42),(11,43,40),(12,44,41),(13,28,16),(14,29,17),(15,30,18),(19,50,47),(20,51,48),(21,49,46),(31,52,34),(32,53,35),(33,54,36)], [(2,3),(4,13),(5,15),(6,14),(7,27),(8,26),(9,25),(10,51),(11,50),(12,49),(16,39),(17,38),(18,37),(19,43),(20,45),(21,44),(22,29),(23,28),(24,30),(31,33),(34,54),(35,53),(36,52),(40,47),(41,46),(42,48)]])
C2×C33⋊C2 is a maximal subgroup of
C33⋊8(C2×C4) C33⋊7D4 C33⋊8D4 C33⋊12D4 C33⋊15D4 C2×S3×C3⋊S3 C32⋊5GL2(𝔽3)
C2×C33⋊C2 is a maximal quotient of C33⋊8Q8 C33⋊12D4 C33⋊15D4
Matrix representation of C2×C33⋊C2 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0],[0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1],[1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2×C33⋊C2 in GAP, Magma, Sage, TeX
C_2\times C_3^3\rtimes C_2
% in TeX
G:=Group("C2xC3^3:C2");
// GroupNames label
G:=SmallGroup(108,44);
// by ID
G=gap.SmallGroup(108,44);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,122,483,1804]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export